Stress stability study of simeprevir, a hepatitis C virus inhibitor, using feasible TLC-spectro-densitometry: application to pharmaceutical dosage form and human plasma
Abstract
Simeprevir is one of the newest direct action anti-hepatitis C drugs. In the present work, a simple, highly selective and stability-indicating, high-performance thin-layer chromatography (HPTLC) method is proposed and validated for the assay of simeprevir both in pharmaceutical dosage form and spiked human plasma. The method used silica gel 60 F254 coated HPTLC aluminum plates as the stationary phase. The mobile phase system was ethyl acetate-hexane-methanol (5 : 4 : 1, v/v/v). The wavelength for both detection and quantitation was set at 288 nm. This system was found to give a compact spot of simeprevir; the retardation factor (RF) value was 0.67 ± 0.02. The guidelines of the International Conference on Harmonization were followed to validate the proposed analytical method, and the results were acceptable. The calibration curve was linear over the range of 80–1000 ng per spot. The limit of detection was 19.0 ng per spot, and the limit of quantitation was 57.0 ng per spot. The drug was subjected to various stress conditions including hydrolytic, oxidative and UV-induced resulting in varying degrees of degradation. The results showed that the proposed method could efficiently separate the degradation products from the intact drug and allow its satisfactory quantitation. The proposed method was employed successfully for the accurate and reproducible analysis of the pharmaceutical preparation and human plasma containing the drug. The proposed method's precision and accuracy were statistically similar to those of a reported method.