Issue 31, 2020, Issue in Progress

From cyclic amines and acetonitrile to amidine zinc(ii) complexes

Abstract

A seemingly simple combination of [Zn(quin)2(H2O)] (quin = quinaldinate) and a selected secondary cyclic amine, piperidine (pipe), pyrrolidine (pyro) or morpholine (morph), afforded in acetonitrile a number of products: anionic homoleptic quinaldinate, neutral heteroleptic quinaldinate/amine and quinaldinate/amidine complexes. The piperidine and pyrrolidine systems underwent reaction with acetonitrile to give amidines. The in situ formed piperidinoacetamidine (pipeam) or pyrrolidinoacetamidine (pyroam) coordinated to zinc(II). Reactions with piperidine led to trans-[Zn(quin)2(pipe)2]·2CH3CN (1), [Zn(quin)2(pipe)]·cis-[Zn(quin)2(pipe)2] (2), pipeH[Zn(quin)3]·CH3CN (3), [Zn(quin)2(pipeam)]·CH3CN (4a), [Zn(quin)2(pipeam)]·2CHCl3 (4b), pipeamH[Zn(quin)3] (5) and pipeamH[Zn(quin)2(CH3COO)]·acetamide (6) (pipeH+ and pipeamH+ denote protonated amine or amidine). By analogy, [Zn(quin)2(pyro)2] (7), pyroH[Zn(quin)3]·CH3CN (8), pyroH[Zn(quin)2Cl] (9), [Zn(quin)2(pyroam)]·CH3CN·0.5pyroam·0.5H2O (10a), [Zn(quin)2(pyroam)]·2CHCl3 (10b), [Zn(quin)2(pyroam)]·CH2Cl2 (10c) and pyroamH[Zn(quin)3] (11) were obtained in the pyrrolidine reactions. The morpholine system allowed isolation of only two novel products, trans-[Zn(quin)2(morph)2] (12) and morphH[Zn(quin)3]·CH3CN (13). Importantly, no amidine could be isolated. Instead, in autoclaves at 105 °C morpholine degraded to ammonia, as confirmed by mass spectrometry of the gas phase. pyroamH[Zn(quin)3] exists in two polymorphs which differ in the binding modes of quinaldinate ligands. In 11triclinic, the metal ion of [Zn(quin)3] features a five-coordinate environment, whereas that in 11monoclinic is surrounded by six donors. Stabilities of the [Zn(quin)3] isomers were assessed with DFT calculations. The one with a six-coordinate zinc(II) ion was found to be more stable than its five-coordinate counterpart. Favorable intermolecular interactions in the solid state stabilize both and reduce the energy difference between them. The calculations show the conversion of the five-coordinate [Zn(quin)3] into its coordinatively saturated isomer to be an almost barrierless process.

Graphical abstract: From cyclic amines and acetonitrile to amidine zinc(ii) complexes

Supplementary files

Article information

Article type
Paper
Submitted
09 Apr 2020
Accepted
29 Apr 2020
First published
13 May 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 18200-18221

From cyclic amines and acetonitrile to amidine zinc(II) complexes

N. Podjed, B. Modec, M. M. Alcaide and J. López-Serrano, RSC Adv., 2020, 10, 18200 DOI: 10.1039/D0RA03192E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements