Issue 37, 2020, Issue in Progress

Solution-processed graphene oxide electrode for supercapacitors fabricated using low temperature thermal reduction

Abstract

We present a low temperature and solution-based fabrication process for reduced graphene oxide (rGO) electrodes for electric double layer capacitors (EDLCs). Through the heat treatment at 180 °C between the spin coatings of graphene oxide (GO) solution, an electrode with loosely stacked GO sheets could be obtained, and the GO base coating was partially reduced. The thickness of the electrodes could be freely controlled as these electrodes were prepared without an additive as a spacer. The GO coating layers were then fully reduced to rGO at a relatively low temperature of 300 °C under ambient atmospheric conditions, not in any chemically reducing environment. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) results showed that the changes in oxygen functional groups of GO occurred through the heat treatments at 180 and 300 °C, which clearly confirmed the reduction from GO to rGO in the proposed fabrication process at the low thermal reduction temperatures. The structural changes before and after the thermal reduction of GO to rGO analyzed using Molecular Dynamic (MD) simulation showed the same trends as those characterized using Raman spectroscopy and XPS. An EDLC composed of the low temperature reduced rGO-based electrodes and poly(vinyl alcohol)/phosphoric acid (PVA/H3PO4) electrolyte gel was shown to have high specific capacitance of about 240 F g−1 together with excellent energy and power densities of about 33.3 W h kg−1 and 833.3 W kg−1, respectively. Furthermore, a series of multiple rGO-based EDLCs was shown to have fast charging and slow discharging properties that allowed them to light up a white light emitting diode (LED) for 30 min.

Graphical abstract: Solution-processed graphene oxide electrode for supercapacitors fabricated using low temperature thermal reduction

Supplementary files

Article information

Article type
Paper
Submitted
03 May 2020
Accepted
04 Jun 2020
First published
09 Jun 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 22102-22111

Solution-processed graphene oxide electrode for supercapacitors fabricated using low temperature thermal reduction

H. Kil, K. Yun, M. Yoo, S. Kim and J. Park, RSC Adv., 2020, 10, 22102 DOI: 10.1039/D0RA03985C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements