Issue 43, 2020, Issue in Progress

Magnetic phase transition from paramagnetic in Nb2AlC-MAX to superconductivity-like diamagnetic in Nb2C-MXene: an experimental and computational analysis

Abstract

Transition metal carbides (TMCs) have recently emerged as competent members among the family of two-dimensional (2D) materials, owing to their promising applications. There are many promising applications of MXenes; however, their magnetic properties lack a wide margin, both experimentally as well as theoretically, which needs to be investigated for potential use in spintronics. In this study, we carried out a comprehensive etching process via selective extraction of Al layers from Nb2AlC-MAX using a wet electrochemical route under well-optimized conditions to obtain fine 2D-Nb2C MXene sheets. Structural analysis using X-ray diffraction (XRD) confirms the effective removal of Al followed by confirmation of a 2D layered structure from morphological analysis using scanning electron microscopy (SEM). Zero-field-cooled (ZFC) and field-cooled (FC) measurements of MAX and MXene at different field strengths were performed using a superconducting quantum interference device (SQUID). Magnetic measurements reveal the paramagnetic nature of Nb2AlC-MAX measured under 5 mT; however, this changes to a clear superconductor-like diamagnetic behavior with a shift of the magnetization from positive to negative values at low temperatures when measured under 5 mT and 10 mT for Nb2C MXene. The diamagnetism, however, is changed to paramagnetism at 100 mT, which shows the existence of critical fields known typically for a type-II superconductor. To gain an insight into this unusual behavior in MXene, density functional theory (DFT) first-principles calculation was also performed in Wein2K software using spin-polarized generalized gradient approximation (sp-GGA). The magnetic moment of the compound is calculated to be negative, which corresponds well with the experimental finding and suggests that the negative magnetic moment originated from the d-orbital of Nb2C. The present report provides a pathway to deeply understanding the existence of superconductivity-like diamagnetic behavior in Nb2C MXene, which is useful for future magnetic applications.

Graphical abstract: Magnetic phase transition from paramagnetic in Nb2AlC-MAX to superconductivity-like diamagnetic in Nb2C-MXene: an experimental and computational analysis

Article information

Article type
Paper
Submitted
23 May 2020
Accepted
25 Jun 2020
First published
07 Jul 2020
This article is Open Access
Creative Commons BY license

RSC Adv., 2020,10, 25669-25678

Magnetic phase transition from paramagnetic in Nb2AlC-MAX to superconductivity-like diamagnetic in Nb2C-MXene: an experimental and computational analysis

Z. U. Din Babar, J. Fatheema, N. Arif, M. S. Anwar, S. Gul, M. Iqbal and S. Rizwan, RSC Adv., 2020, 10, 25669 DOI: 10.1039/D0RA04568C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements