Issue 64, 2020, Issue in Progress

Quantitative absorption imaging of red blood cells to determine physical and mechanical properties

Abstract

Red blood cells or erythrocytes, constituting 40 to 45 percent of the total volume of human blood are vesicles filled with hemoglobin with a fluid-like lipid bilayer membrane connected to a 2D spectrin network. The shape, volume, hemoglobin mass, and membrane stiffness of RBCs are important characteristics that influence their ability to circulate through the body and transport oxygen to tissues. In this study, we show that a simple two-LED set up in conjunction with standard microscope imaging can accurately determine the physical and mechanical properties of single RBCs. The Beer–Lambert law and undulatory motion dynamics of the membrane have been used to measure the total volume, hemoglobin mass, membrane tension coefficient, and bending modulus of RBCs. We also show that this method is sensitive enough to distinguish between the mechanical properties of RBCs during morphological changes from a typical discocyte to echinocytes and spherocytes. Measured values of the tension coefficient and bending modulus are 1.27 × 10−6 J m−2 and 7.09 × 10−20 J for discocytes, 4.80 × 10−6 J m−2 and 7.70 × 10−20 J for echinocytes, and 9.85 × 10−6 J m−2 and 9.69 × 10−20 J for spherocytes, respectively. This quantitative light absorption imaging reduces the complexity related to the quantitative imaging of the biophysical and mechanical properties of a single RBC that may lead to enhanced yet simplified point of care devices for analyzing blood cells.

Graphical abstract: Quantitative absorption imaging of red blood cells to determine physical and mechanical properties

Supplementary files

Article information

Article type
Paper
Submitted
21 Jun 2020
Accepted
28 Sep 2020
First published
23 Oct 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 38923-38936

Quantitative absorption imaging of red blood cells to determine physical and mechanical properties

R. Paul, Y. Zhou, M. Nikfar, M. Razizadeh and Y. Liu, RSC Adv., 2020, 10, 38923 DOI: 10.1039/D0RA05421F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements