Issue 49, 2020, Issue in Progress

Synthesis of 2D cobalt oxide nanosheets using a room temperature liquid metal

Abstract

Room temperature liquid metals based on Ga can be used as a synthesis medium for the creation of metal oxide nanomaterials, however one thermodynamic limitation is that metals that are more easily oxidised than Ga are required to ensure their preferential formation. In this work we demonstrate a proof of principle approach whereby exposing the liquid metal alloyed with the required metal to acidic conditions circumvents preferential formation of Ga2O3 and allows for the formation of the required 2D transition metal oxide nanosheets. The synthesis procedure is straightforward in that it only requires bubbling oxygen gas through the liquid metal alloy into a solution of 10 mM HCl. We show that the formation of thin nanosheets of ca. 1 nm in thickness of CoO is possible. The material is characterised using transmission electron microscopy, atomic force microscopy, X-ray photoelectron and Raman spectroscopy. The electrocatalytic activity of the CoO nanosheets was investigated for the oxygen evolution reaction where the nanosheet thickness was found to be a factor influencing the activity. This proof of principle offers a route to the possible formation of many other 2D transition metal oxides from metals that are less readily oxidised than Ga by taking advantage of the interesting properties of room temperature liquid metals.

Graphical abstract: Synthesis of 2D cobalt oxide nanosheets using a room temperature liquid metal

Supplementary files

Article information

Article type
Paper
Submitted
10 Jul 2020
Accepted
30 Jul 2020
First published
11 Aug 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 29181-29186

Synthesis of 2D cobalt oxide nanosheets using a room temperature liquid metal

J. Crawford, A. Cowman and A. P. O'Mullane, RSC Adv., 2020, 10, 29181 DOI: 10.1039/D0RA06010K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements