Development of optical sensor for water in acetonitrile based on propeller-structured BODIPY-type pyridine–boron trifluoride complex†
Abstract
A propeller-structured 3,5,8-trithienyl-BODIPY-type pyridine–boron trifluoride complex, ST-3-BF3, which has three units of 2-(pyridin-4-yl)-3-(thiophen-2-yl)acrylonitrile at the 3-, 5-, and 8-positions on the BODIPY skeleton, was designed and developed as an intramolecular charge transfer (ICT)-type optical sensor for the detection of a trace amount of water in acetonitrile. The characterization of ST-3-BF3 was successfully determined by FTIR, 1H and 11B NMR measurements, high-resolution mass spectrometry (HRMS) analysis, thermogravimetry-differential thermal analysis (TG-DTA), photoabsorption and fluorescence spectral measurements, and density functional theory (DFT) calculations. ST-3-BF3 showed a broad photoabsorption band in the range of 600 to 800 nm, which is assigned to the S0 → S1 transition of the BODIPY skeleton with the expanded π-conjugated system over the 2-(pyridin-4-yl)-3-(thiophen-2-yl)acrylonitrile units at the 3-, 5-, and 8-positions onto the BODIPY core. In addition, a photoabsorption band was also observed in the range of 300 to 550 nm, which can be assigned to the ICT band between the 2-(pyridin-4-yl)-3-(thiophen-2-yl)acrylonitrile units at 3-, 5-, and 8-positions and the BODIPY core. ST-3-BF3 exhibited a characteristic fluorescence band originating from the BODIPY skeleton at around 730 nm. It was found that by addition of a trace amount of water to the acetonitrile solution of ST-3-BF3, the photoabsorption band at around 415 nm and the fluorescence band at around 730 nm increased linearly as a function of the water content below only 0.2 wt%, which could be ascribed to the change in the ICT characteristics due to the dissociation of ST-3-BF3 into ST-3 by water molecules. Thus, this work demonstrated that the 3,5,8-trithienyl-BODIPY-type pyridine–boron trifluoride complex can act as a highly-sensitive optical sensor for the detection of a trace amount of water in acetonitrile.