Issue 63, 2020, Issue in Progress

Photocatalytic degradation of diphenhydramine in aqueous solution by natural dolomite

Abstract

Natural dolomite, an inexpensive and vastly available natural material, was demonstrated as a potential heterogeneous photocatalyst for the efficient removal of diphenhydramine (DP) from aqueous solution under simulated solar light in this study. About 65% DP removal and 14% mineralization were achieved with dolomite as a catalyst after 75 min irradiation. The electron spin resonance analysis and scavenger experiments verified that 1O2, ˙OH, and O2˙ produced in the dolomite system were the main reactive species responsible for DP degradation. Furthermore, first-principle calculations combined with deoxygenation experiments were employed to elucidate the photocatalytic mechanism. The results revealed that the dolomite changed from an insulator to a semiconductor after partial substitution of Mg2+ by Fe2+, suggesting that natural dolomite could act as a semiconductor photocatalyst in photoreactions. Under irradiation, photo-excited electrons and holes separate and migrate to the surface of dolomite, and subsequently react to form reactive species resulting in the DP degradation. Product studies demonstrated that the main degradation pathways of DP included hydroxylation of the aromatic ring as well as hydroxyl radical mediated oxidation of the alkylamine side chain. This work indicated that natural dolomite could be applied in water and wastewater treatment as a promising photocatalyst.

Graphical abstract: Photocatalytic degradation of diphenhydramine in aqueous solution by natural dolomite

Supplementary files

Article information

Article type
Paper
Submitted
02 Sep 2020
Accepted
08 Oct 2020
First published
21 Oct 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 38663-38671

Photocatalytic degradation of diphenhydramine in aqueous solution by natural dolomite

L. Song, C. Yi, Q. Wu, Z. Li, W. Zhang and H. Hong, RSC Adv., 2020, 10, 38663 DOI: 10.1039/D0RA07533G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements