High quality N-polar GaN films grown with varied V/III ratios by metal–organic vapor phase epitaxy†
Abstract
We studied the growths and characterizations of N-polar GaN films grown with constant and varied V/III ratios in high-temperature (HT) GaN growth on offcut c-plane sapphire substrates by metal–organic vapor phase epitaxy. It is found that growth with a constantly low V/III ratio resulted in a high crystallinity but a rough surface and a high oxygen concentration, whereas growth with a high V/III ratio led to a smooth surface but a high carbon concentration and a degraded crystallinity. The overall quality of the N-polar GaN epilayer cannot be effectively improved simply by tuning the V/III ratio. The growth with varied V/III ratios was conducted by lowering the V/III ratio in the initial HT-GaN growth and keeping the V/III ratio constantly high in the subsequent growth. Such a change of V/III ratio resulted in a 3D-to-2D like growth mode transition during the early stage of HT-GaN growth which helped reduce threading dislocations and suppress impurity incorporation. By optimizing the nucleation temperature and the thickness of the initial low-V/III-ratio layer, the minimum full-widths at half-maximum of (00)/(10) rocking curves obtained were 288/350 arcsec and the oxygen concentration was reduced significantly from 1.6 × 1018 cm−3 to 3.7 × 1017 cm−3 while keeping a hillock-free smooth surface morphology. The overall quality of the N-polar GaN films was considerably improved. We believe that this simple, yet effective growth technique has great application prospects for high-performance N-polar GaN-based electron devices.