A first-principles investigation of α, β, and γ-MnO2 as potential cathode materials in Al-ion batteries
Abstract
An inexpensive and eco-friendly alternative energy storage solution is becoming more in demand as the world moves towards greener technology. We used first principles calculations to investigate α, β, and γ-MnO2 and their Al-ion intercalation mechanism in potential applications for aluminum batteries. We explored these complexes through investigating properties such as volume change, binding/diffusion energy, and band gap to gauge each material. α-MnO2 had almost no volume change. γ-MnO2 had the lowest binding energy and diffusion barrier. Our study gives insight into the feasibility of using MnO2 in aluminum batteries and guides investigation of the material within its different phases.