Issue 37, 2020

Chemically driven superstructural ordering leading to giant unit cells in unconventional clathrates Cs8Zn18Sb28 and Cs8Cd18Sb28

Abstract

The unconventional clathrates, Cs8Zn18Sb28 and Cs8Cd18Sb28, were synthesized and reinvestigated. These clathrates exhibit unique and extensive superstructural ordering of the clathrate-I structure that was not initially reported. Cs8Cd18Sb28 orders in the Ia[3 with combining macron]d space group (no. 230) with 8 times larger volume of the unit cell in which most framework atoms segregate into distinct Cd and Sb sites. The structure of Cs8Zn18Sb28 is much more complicated, with an 18-fold increase of unit cell volume accompanied by significant reduction of symmetry down to P2 (no. 3) monoclinic space group. This structure was revealed by a combination of synchrotron X-ray diffraction and electron microscopy techniques. A full solid solution, Cs8Zn18−xCdxSb28, was also synthesized and characterized. These compounds follow Vegard's law in regard to their primitive unit cell sizes and melting points. Variable temperature in situ synchrotron powder X-ray diffraction was used to study the formation and melting of Cs8Zn18Sb28. Due to the heavy elements comprising clathrate framework and the complex structural ordering, the synthesized clathrates exhibit ultralow thermal conductivities, all under 0.8 W m−1 K−1 at room temperature. Cs8Zn9Cd9Sb28 and Cs8Zn4.5Cd13.5Sb28 both have total thermal conductivities of 0.49 W m−1 K−1 at room temperature, among the lowest reported for any clathrate. Cs8Zn18Sb28 has typical p-type semiconducting charge transport properties, while the remaining clathrates show unusual n–p transitions or sharp increases of thermopower at low temperatures. Estimations of the bandgaps as activation energy for resistivity dependences show an anomalous widening and then shrinking of the bandgap with increasing Cd-content.

Graphical abstract: Chemically driven superstructural ordering leading to giant unit cells in unconventional clathrates Cs8Zn18Sb28 and Cs8Cd18Sb28

Supplementary files

Article information

Article type
Edge Article
Submitted
14 Jul 2020
Accepted
08 Sep 2020
First published
08 Sep 2020
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2020,11, 10255-10264

Chemically driven superstructural ordering leading to giant unit cells in unconventional clathrates Cs8Zn18Sb28 and Cs8Cd18Sb28

B. Owens-Baird, P. Yox, S. Lee, X. B. Carroll, S. Grass Wang, Y. Chen, O. I. Lebedev and K. Kovnir, Chem. Sci., 2020, 11, 10255 DOI: 10.1039/D0SC03846F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements