Issue 3, 2020

Pulsed laser rusted stainless steel: a robust electrode material applied for energy storage and generation applications

Abstract

In terms of global energy needs, fabrication of robust electrode materials with superior energy storage performance and excellent energy generation activity is significant. We demonstrate for the first time the use of the pulsed laser rusting strategy for transmuting stainless steel (SS) into an active electrode that is used as an energy storage system of supercapacitors (SCs) and as an electrocatalyst for the oxygen evolution reaction (OER). Herein, a bare stainless steel (denoted as BARE-SS) electrode is rusted on a single side (denoted as SSLR-SS) and on double sides (represented as DSLR-SS) by means of a Nd:YAG laser pulse. The unique honey-comb texture of highly conductive Fe–Cr–Ni oxide/oxyhydroxide rust layers causes a shorter diffusion path for electrons and ions. Therefore, the as-rusted electrodes possess preferred electrochemically active sites enabling the effective contact between them and the electrolyte (1 M KOH). The electrochemical measurements reveal that compared with the BARE-SS and SSLR-SS electrodes, the DSLR-SS electrode unveils improved capacitive behavior, including satisfactory areal capacitance (22 μF cm−2 at 5 mV s−1). Meanwhile, the DSLR-SS electrode has concurrently performed well as an electrocatalyst for the OER and can attain a current density of 10 mA cm−2 at a low overpotential of 382 mV with a Tafel slope of 52 mV dec−1. These findings shed light on the economic pathway to prepare pulsed laser rusted metallic alloys and to handle multifunctional challenges in the field of energy.

Graphical abstract: Pulsed laser rusted stainless steel: a robust electrode material applied for energy storage and generation applications

Supplementary files

Article information

Article type
Paper
Submitted
19 Aug 2019
Accepted
02 Dec 2019
First published
03 Dec 2019

Sustainable Energy Fuels, 2020,4, 1242-1253

Pulsed laser rusted stainless steel: a robust electrode material applied for energy storage and generation applications

N. Karthik, T. Tian, T. N. J. I. Edison, R. Atchudan, Y. R. Lee, S. Kim and D. Xiong, Sustainable Energy Fuels, 2020, 4, 1242 DOI: 10.1039/C9SE00676A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements