Issue 2, 2020

Synergistic effect of a noble metal free Ni(OH)2 co-catalyst and a ternary ZnIn2S4/g-C3N4 heterojunction for enhanced visible light photocatalytic hydrogen evolution

Abstract

In the present study, we report the synthesis of a ternary chalcogenide (ZnIn2S4) based g-C3N4 heterojunction composite with non-noble metal Ni(OH)2 as a co-catalyst for enhanced visible light photocatalytic hydrogen generation. The optimized deposition of Ni(OH)2 (1 wt%) on ZnIn2S4/g-C3N4 resulted in 22.5 fold higher activity than that of the one without Ni(OH)2 under visible light irradiation (λ > 420 nm). And the performance for the hydrogen generation activities of the catalysts is in the order of g-C3N4 < ZnIn2S4 < ZnIn2S4/g-C3N4 ≪ ZnIn2S4/g-C3N4@Ni(OH)2. Moreover, the optimized heterojunction catalyst showed higher photocatalytic H2 generation than Pt deposition under similar experimental conditions. Therefore, the synergistic effect of the co-catalyst and ZnIn2S4/g-C3N4 helped in efficient separation of charge carriers for the selective reduction reaction and minimized charge carrier recombination, which is proven by photoluminescence studies, photocurrent measurements. Thus, the selected heterojunction composite system can be a promising photocatalyst for cleaner hydrogen energy production.

Graphical abstract: Synergistic effect of a noble metal free Ni(OH)2 co-catalyst and a ternary ZnIn2S4/g-C3N4 heterojunction for enhanced visible light photocatalytic hydrogen evolution

Supplementary files

Article information

Article type
Paper
Submitted
24 Aug 2019
Accepted
16 Nov 2019
First published
18 Nov 2019

Sustainable Energy Fuels, 2020,4, 750-759

Synergistic effect of a noble metal free Ni(OH)2 co-catalyst and a ternary ZnIn2S4/g-C3N4 heterojunction for enhanced visible light photocatalytic hydrogen evolution

L. R. Nagappagari, S. Samanta, N. Sharma, V. R. Battula and K. Kailasam, Sustainable Energy Fuels, 2020, 4, 750 DOI: 10.1039/C9SE00704K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements