Issue 3, 2020

Electrocatalytic cleavage of lignin model dimers using ruthenium supported on activated carbon cloth

Abstract

Biomass lignin is the largest natural source of renewable aromatic compounds, creating an opportunity for its use as a feedstock provided that deconstruction and upgrading methods become available. Valorization of lignin is challenging because its complex structure is naturally recalcitrant to biological degradation. Deconstruction of this amorphous cross-linked polymer requires cleavage of aryl ether bonds, which account for more than half of the linkages between lignin's phenylpropanoid building blocks. High temperature cracking of lignin is possible via pyrolysis, but linkages such as 4-O-5 bonds are resistant to thermal degradation. Electrocatalytic hydrogenation offers a mild alternative; operated at low temperature and atmospheric pressure, it cleaves ether bonds while saturating aromatic rings with in situ generated hydrogen. To investigate the use of catalytic ruthenium supported on activated carbon cloth to cleave 4-O-5 bonds, model compounds that exhibit this linkage were selected, including 3-phenoxyphenol, 4-phenoxyphenol, 3-phenoxyanisole, and 3-phenoxytoluene. The two phenols, 3-phenoxyphenol and 4-phenoxyphenol, were cleaved and hydrogenated to form cyclohexanol. 3-Phenoxyanisole and 3-phenoxytoluene were also cleaved but with lower conversion rates and cyclohexanol yields. Alkaline electrolyte solutions showed the highest cyclohexanol yields for both substrates. Increasing substrate concentrations from 10 mM to 40 mM increased faradaic efficiency to 25%, while decreasing current density from 100 mA (33.33 mA cm−2) to 20 mA (6.67 mA cm−2) greatly improved the faradaic efficiency to 96%.

Graphical abstract: Electrocatalytic cleavage of lignin model dimers using ruthenium supported on activated carbon cloth

Article information

Article type
Paper
Submitted
07 Oct 2019
Accepted
18 Dec 2019
First published
19 Dec 2019

Sustainable Energy Fuels, 2020,4, 1340-1350

Author version available

Electrocatalytic cleavage of lignin model dimers using ruthenium supported on activated carbon cloth

M. Garedew, D. Young-Farhat, S. Bhatia, P. Hao, J. E. Jackson and C. M. Saffron, Sustainable Energy Fuels, 2020, 4, 1340 DOI: 10.1039/C9SE00912D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements