Issue 9, 2020

Catalytic hydrodeoxygenation of biomass-derived oxygenates to bio-fuels over Co-based bimetallic catalysts

Abstract

The rapid consumption of conventional fossil fuels has caused a sharp decline in their reserves and led to climate change. Exploitation of renewable energy sources especially bio-fuels such as 2,5-dimethylfuran (DMF), methylfuran (MF), γ-valerolactone (GVL), etc. has both environmental and economic benefits. In the present work, diverse Co-based bimetallic catalysts were prepared and used for catalyzing hydrodeoxygenation (HDO) of biomass-derived oxygenates. Co5Zn1Ox, obtained by the incorporation of Zn species into the Co metal catalyst especially with a Co/Zn molar ratio of 5, could enhance the catalytic performances obviously compared to the sole Co catalyst. For example, the DMF, MF, and GVL yields reached up to 94, 98, and 77% during the catalysis by Co5Zn1Ox, which were much greater than 74, 0, and 23% for the Co catalyst, respectively. The enhanced performances of Co5Zn1Ox stem from the strong interaction between the Co and Zn species. Specifically, the presence of ZnO could stabilize Co2+ species, by offering electrons to Co species and creating oxygen vacancies, resulting in Co5Zn1Ox showing the highest adsorption amounts of furfural and furfuryl alcohol compared to Co1Zn1Ox and Co7Zn1Ox catalysts. Moreover, the catalyst showed good universality and reusability, and the HDO of 5-HMF to DMF proceeded in a true heterogeneous manner. The present work is believed to extend the application of bimetallic catalysts to the synthesis of bio-fuels and utilization of biomass materials.

Graphical abstract: Catalytic hydrodeoxygenation of biomass-derived oxygenates to bio-fuels over Co-based bimetallic catalysts

Supplementary files

Article information

Article type
Paper
Submitted
01 Mar 2020
Accepted
11 Jun 2020
First published
11 Jun 2020

Sustainable Energy Fuels, 2020,4, 4558-4569

Catalytic hydrodeoxygenation of biomass-derived oxygenates to bio-fuels over Co-based bimetallic catalysts

Z. He, C. Jiang, Z. Wang, K. Wang, Y. Sun, M. Yao, Z. Li and Z. Liu, Sustainable Energy Fuels, 2020, 4, 4558 DOI: 10.1039/D0SE00332H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements