Issue 7, 2020

Liquid crystalline networks based on photo-initiated thiol–ene click chemistry

Abstract

Photo-initiated thiol–ene click chemistry is used to develop shape memory liquid crystalline networks (LCNs). A biphenyl-based di-vinyl monomer is synthesized and cured with a di-thiol chain extender and a tetra-thiol crosslinker using UV light. The effects of photo-initiator concentration and UV light intensity on the curing behavior and liquid crystalline (LC) properties of the LCNs are investigated. The chemical composition is found to significantly influence the microstructure and the related thermomechanical properties of the LCNs. The structure–property relationship is further explored using molecular dynamics simulations, revealing that the introduction of the chain extender promotes the formation of an ordered smectic LC phase instead of agglomerated structures. The concentration of the chain extender affects the liquid crystallinity of the LCNs, resulting in distinct thermomechanical and shape memory properties. This class of LCNs exhibits fast curing rates, high conversion levels, and tailorable liquid crystallinity, making it a promising material system for advanced manufacturing, where complex and highly ordered structures can be produced with fast reaction kinetics and low energy consumption.

Graphical abstract: Liquid crystalline networks based on photo-initiated thiol–ene click chemistry

Supplementary files

Article information

Article type
Paper
Submitted
09 Sep 2019
Accepted
06 Dec 2019
First published
10 Dec 2019

Soft Matter, 2020,16, 1760-1770

Author version available

Liquid crystalline networks based on photo-initiated thiol–ene click chemistry

Y. Li, Y. Zhang, M. Goswami, D. Vincent, L. Wang, T. Liu, K. Li, J. K. Keum, Z. Gao, S. Ozcan, K. R. Gluesenkamp, O. Rios and M. R. Kessler, Soft Matter, 2020, 16, 1760 DOI: 10.1039/C9SM01818B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements