Issue 6, 2020

Patterning non-equilibrium morphologies in stimuli-responsive gels through topographical confinement

Abstract

Stimuli-responsive “smart” polymers have generated significant interest for introducing dynamic control into the properties of antifouling coatings, smart membranes, switchable adhesives and cell manipulation substrates. Switchable surface morphologies formed by confining stimuli-responsive gels to topographically structured substrates have shown potential for a variety of interfacial applications. Beyond patterning the equilibrium swelling behavior of gels, subjecting stimuli-responsive gels to topographical confinement could also introduce spatial gradients in the various timescales associated with gel deformation, giving rise to novel non-equilibrium morphologies. Here we show how by curing poly(N-isopropylacrylamide) (pNIPAAm)-based gel under confinement to a rigid, bumpy substrate, we can not only induce the surface curvature to invert with temperature, but also program the transient, non-equilibrium morphologies that emerge during the inversion process through changing the heating path. Finite element simulations show that the emergence of these transient morphologies is correlated with confinement-induced gradients in polymer concentration and position-dependent hydrostatic pressure within the gel. To illustrate the relevance of such morphologies in interfacial applications, we show how they enable us to control the gravity-induced assembly of colloidal particles and microalgae. Finally, we show how more complex arrangements in particle assembly can be created through controlling the thickness of the temperature-responsive gel over the bumps. Patterning stimuli-responsive gels on topographically-structured surfaces not only enables switching between two invertible topographies, but could also create opportunities for stimuli ramp-dependent control over the local curvature of the surface and emergence of unique transient morphologies. Harnessing these features could have potential in the design of multifunctional, actuatable materials for switchable adhesion, antifouling, cell manipulation, and liquid and particle transport surfaces.

Graphical abstract: Patterning non-equilibrium morphologies in stimuli-responsive gels through topographical confinement

Supplementary files

Article information

Article type
Paper
Submitted
07 Nov 2019
Accepted
06 Dec 2019
First published
06 Dec 2019

Soft Matter, 2020,16, 1463-1472

Author version available

Patterning non-equilibrium morphologies in stimuli-responsive gels through topographical confinement

C. T. Zhang, Y. Liu, X. Wang, X. Wang, S. Kolle, A. C. Balazs and J. Aizenberg, Soft Matter, 2020, 16, 1463 DOI: 10.1039/C9SM02221J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements