Issue 10, 2020

Correlation of droplet elasticity and volume fraction effects on emulsion dynamics

Abstract

The rheological properties of emulsions are of considerable importance in a diverse range of scenarios. Here we describe a superposition of the effects of droplet elasticity and volume fraction on the dynamics of emulsions. The superposition is governed by physical interactions between droplets, and provides a new mechanism for modifying the flow behavior of emulsions, by controlling the elasticity of the dispersed phase. We investigate the properties of suspensions of emulsified wormlike micelles (WLM). Dense suspensions of the emulsified WLM droplets exhibit thermally responsive properties in which the viscoelastic moduli decrease by an order of magnitude over a temperature range of 0 °C to 25 °C. Surprisingly, the dependence of modulus on volume fraction is independent of droplet stiffness. Instead, the emulsion modulus scales as a power-law with volume fraction with a constant exponent across all temperatures even as the droplet properties change from elastic to viscous. Nevertheless, the underlying droplet dynamics depend strongly on temperature. From stress relaxation experiments, we quantify droplet dynamics across the cage breaking time scale below which the droplets are locally caged by neighbors and above which the droplets escape their cages to fully relax. For elastic droplets and high volume fractions, droplets relax less stress on short time scales and the terminal relaxations are slower than for viscous droplets and lower volume fractions. Characteristic measures of the short and long-time dynamics are highly correlated for variations in both temperature and emulsion concentration, suggesting that thermal and volume fraction effects represent independent parameters to control emulsion properties.

Graphical abstract: Correlation of droplet elasticity and volume fraction effects on emulsion dynamics

Article information

Article type
Paper
Submitted
04 Dec 2019
Accepted
13 Feb 2020
First published
13 Feb 2020

Soft Matter, 2020,16, 2574-2580

Author version available

Correlation of droplet elasticity and volume fraction effects on emulsion dynamics

R. Poling-Skutvik, X. Di and C. O. Osuji, Soft Matter, 2020, 16, 2574 DOI: 10.1039/C9SM02394A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements