A fluidic demultiplexer for controlling large arrays of soft actuators†
Abstract
The field of soft robotics endeavors to create robots that are mostly, if not entirely, soft. While there have been significant advances in both soft actuators and soft sensors, there has been relatively little work done in the development of soft control systems. This work proposes a soft microfluidic demultiplexer as a potential control system for soft robotics. Demultiplexers enable the control of many outputs with just a few inputs, increasing a soft robot's complexity while minimizing its reliance on external valves and other off-board components. The demultiplexer in this work improves upon earlier microfluidic demultiplexers with its nearly two-fold reduction of inputs, a design feature that simplifies control and increases efficiency. Additionally, the demultiplexer in this work is designed to accommodate the high pressures and flow rates that soft robotics demands. The demultiplexer is characterized from the level of individual valves to full system parameters, and its functionality is demonstrated by controlling an array of individually addressable soft actuators.
- This article is part of the themed collection: Liquid Composites