Issue 3, 2020

Novel wide-bandgap non-fullerene acceptors for efficient tandem organic solar cells

Abstract

The power conversion efficiency (PCE) of tandem organic photovoltaics (OPVs) is currently limited by the lack of suitable wide-bandgap materials for the front-cell. Here, two new acceptor molecules, namely IDTA and IDTTA, with optical bandgaps (Eoptg) of 1.90 and 1.75 eV, respectively, are synthesized and studied for application in OPVs. When PBDB-T is used as the donor polymer, single-junction cells with PCE of 7.4%, for IDTA, and 10.8%, for IDTTA, are demonstrated. The latter value is the highest PCE reported to date for wide-bandgap (Eoptg ≥ 1.7 eV) bulk-heterojunction OPV cells. The higher carrier mobility in IDTTA-based cells leads to improved charge extraction and higher fill-factor than IDTA-based devices. Moreover, IDTTA-based OPVs show significantly improved shelf-lifetime and thermal stability, both critical for any practical applications. With the aid of optical-electrical device modelling, we combined PBDB-T:IDTTA, as the front-cell, with PTB7-Th:IEICO-4F, as the back-cell, to realize tandem OPVs with open circuit voltage of 1.66 V, short circuit current of 13.6 mA cm−2 and a PCE of 15%; in excellent agreement with our theoretical predictions. The work highlights IDTTA as a promising wide-bandgap acceptor for high-performance tandem OPVs.

Graphical abstract: Novel wide-bandgap non-fullerene acceptors for efficient tandem organic solar cells

Supplementary files

Article information

Article type
Paper
Submitted
24 Oct 2019
Accepted
09 Dec 2019
First published
09 Dec 2019

J. Mater. Chem. A, 2020,8, 1164-1175

Novel wide-bandgap non-fullerene acceptors for efficient tandem organic solar cells

Y. Firdaus, Q. He, Y. Lin, F. A. A. Nugroho, V. M. Le Corre, E. Yengel, A. H. Balawi, A. Seitkhan, F. Laquai, C. Langhammer, F. Liu, M. Heeney and T. D. Anthopoulos, J. Mater. Chem. A, 2020, 8, 1164 DOI: 10.1039/C9TA11752K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements