Issue 3, 2020

Electrospun carbon nanofibers with MnS sulfiphilic sites as efficient polysulfide barriers for high-performance wide-temperature-range Li–S batteries

Abstract

Lithium–sulfur (Li–S) batteries have the advantages of high theoretical capacity and energy density, which are considered as promising for future energy storage. Besides, the high gravimetric energy density makes Li–S batteries more suitable as power sources for apparatuses such as high-altitude drones and space vehicles. For these applications, the batteries should have a low self-discharge and a wide temperature range. Herein, we introduce carbon nanofibers with MnS sulfiphilic sites as flexible interlayers into Li–S batteries, reducing the shuttle effect and accelerating the reaction kinetics through physical inhibition, chemical adsorption and conversion that promote synergy. The self-discharge of the cell is significantly weakened. The voltage is maintained at 2.37 V during 150 hours resting after 20 cycles. For a sulfur loading of 2 mg cm−2, the capacity is as high as 714 mA h g−1 after 400 cycles at 1C at room temperature. Besides, the operating temperature of the cell is broadened. At 55 °C and 0 °C, the capacity can be stabilized at 894 mA h g−1 and 853 mA h g−1 after 100 cycles at 0.5C, respectively. This work can gain wide research interest toward lithium–sulfur batteries for applications in extreme environments.

Graphical abstract: Electrospun carbon nanofibers with MnS sulfiphilic sites as efficient polysulfide barriers for high-performance wide-temperature-range Li–S batteries

Supplementary files

Article information

Article type
Paper
Submitted
05 Nov 2019
Accepted
06 Dec 2019
First published
09 Dec 2019

J. Mater. Chem. A, 2020,8, 1212-1220

Electrospun carbon nanofibers with MnS sulfiphilic sites as efficient polysulfide barriers for high-performance wide-temperature-range Li–S batteries

X. Wang, X. Zhao, C. Ma, Z. Yang, G. Chen, L. Wang, H. Yue, D. Zhang and Z. Sun, J. Mater. Chem. A, 2020, 8, 1212 DOI: 10.1039/C9TA12137D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements