Issue 4, 2020

Unconventionally fabricating defect-rich NiO nanoparticles within ultrathin metal–organic framework nanosheets to enable high-output oxygen evolution

Abstract

The high-temperature calcination of metal–organic frameworks (MOFs) often leads to a sharp collapse in the abundant pores inside the MOFs and a serious aggregation of metal sites, which are adverse to electrocatalysis performance. Here, a controllable calcination route was developed for the partial decomposition of ultrathin 2D Ni-based MOF (2D Ni-MOF) precursors to fabricate ultrafine NiO nanoparticles (NPs) within the ultrathin 2D Ni-MOF. In particular, 2D Ni-MOF precursors (thickness: ∼2 nm), for the first time, were rapidly synthesized via a microwave-assisted solvothermal method. The controllable calcination route effectively retained the ultrathin 2D porous nanostructure of the MOFs, and simultaneously enabled the formation of defect-rich ultrafine NiO NPs within the 2D Ni-MOF. Benefiting from the unique nanostructure (i.e., ultrathin 2D nanosheets) and highly active sites (i.e., defect-rich NiO NPs), the partially decomposed 2D Ni-MOF-250 exhibited excellent performance for oxygen evolution reaction (OER) with an overpotential of 250 mV at 50 mA cm−2 in 1 M KOH, outperforming those obtained from other reported nonprecious-metal-based electrocatalysts. More importantly, 2D Ni-MOF-250 could achieve the industry-related current density of 1000 mA cm−2 at a small overpotential of 410 mV, demonstrating its promising potential for use in practical applications. Therefore, the controllable calcination route may stand out as a facile yet robust route for smartly fabricating defect-rich metal oxides within MOFs toward efficient electrocatalysis.

Graphical abstract: Unconventionally fabricating defect-rich NiO nanoparticles within ultrathin metal–organic framework nanosheets to enable high-output oxygen evolution

Supplementary files

Article information

Article type
Paper
Submitted
20 Nov 2019
Accepted
23 Dec 2019
First published
28 Dec 2019

J. Mater. Chem. A, 2020,8, 2140-2146

Unconventionally fabricating defect-rich NiO nanoparticles within ultrathin metal–organic framework nanosheets to enable high-output oxygen evolution

Q. Hu, X. Huang, Z. Wang, G. Li, Z. Han, H. Yang, X. Ren, Q. Zhang, J. Liu and C. He, J. Mater. Chem. A, 2020, 8, 2140 DOI: 10.1039/C9TA12713E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements