Issue 9, 2020

Strategies for inhibiting anode dendrite growth in lithium–sulfur batteries

Abstract

Recently, lithium–sulfur batteries have attracted considerable attention due to their high theoretical specific capacity (1673 mA h g−1) and high energy density (2800 W h kg−1), which is regarded as the most promising next-generation energy used for portable electronic devices, vehicles, and energy storage systems. However, there are still some problems that persist for the practical applications of lithium–sulfur batteries; in particular, the problems caused by lithium dendrite growth can seriously hinder the real-world applications and development of lithium–sulfur batteries. In this paper, we summarize the strategies of lithium anode improvement formulated in recent years, and we introduce them in sufficient progressive order on the basis of three aspects: anode surface modification, anode modification, and anode structure design. Nevertheless, the growth of lithium dendrites is still a formidable problem, and we have to continue devoting time and energy toward addressing this issue.

Graphical abstract: Strategies for inhibiting anode dendrite growth in lithium–sulfur batteries

Article information

Article type
Review Article
Submitted
25 Nov 2019
Accepted
28 Jan 2020
First published
30 Jan 2020

J. Mater. Chem. A, 2020,8, 4629-4646

Strategies for inhibiting anode dendrite growth in lithium–sulfur batteries

Y. Luo, L. Guo, M. Xiao, S. Wang, S. Ren, D. Han and Y. Meng, J. Mater. Chem. A, 2020, 8, 4629 DOI: 10.1039/C9TA12910C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements