Issue 11, 2020

A flexible semitransparent photovoltaic supercapacitor based on water-processed MXene electrodes

Abstract

Solar energy, although it has the highest power density available in terms of renewable energy, has the drawback of being erratic. Integrating an energy harvesting and storage device into photovoltaic energy storage modules is a viable route for obtaining self-powered energy systems. Herein, an MXene-based all-solution processed semitransparent flexible photovoltaic supercapacitor (PSC) was fabricated by integrating a flexible organic photovoltaic (OPV) with Ti3C2Tx MXene as the electrode and transparent MXene supercapacitors with an organic ionogel as the electrolyte in the vertical direction, using Ti3C2Tx thin film as a common electrode. In the quest for a semitransparent flexible PSC, Ti3C2Tx MXene was first used as a transparent electrode for OPV with a high power conversion efficiency of 13.6%. The ionogel electrolyte-based transparent MXene supercapacitor shows a high volumetric capacitance of 502 F cm−3 and excellent stability. Finally, a flexible PSC with a high average transmittance of over 33.5% was successfully constructed by all-solution processing and a remarkable storage efficiency of 88% was achieved. This strategy enables a simple route for fabricating MXene based high-performance all-solution-processed flexible PSCs, which is important for realizing flexible and printable electronics for future technologies.

Graphical abstract: A flexible semitransparent photovoltaic supercapacitor based on water-processed MXene electrodes

Supplementary files

Article information

Article type
Communication
Submitted
16 Jan 2020
Accepted
18 Feb 2020
First published
03 Mar 2020
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2020,8, 5467-5475

A flexible semitransparent photovoltaic supercapacitor based on water-processed MXene electrodes

L. Qin, J. Jiang, Q. Tao, C. Wang, I. Persson, M. Fahlman, P. O. Å. Persson, L. Hou, J. Rosen and F. Zhang, J. Mater. Chem. A, 2020, 8, 5467 DOI: 10.1039/D0TA00687D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements