Issue 17, 2020

The favourable thermodynamic properties of Fe-doped CaMnO3 for thermochemical heat storage

Abstract

The CaMnO3 oxide can reversibly release oxygen over a relatively wide range of temperatures and oxygen partial pressures (pO2) and is thus a promising candidate for thermochemical heat storage in Concentrated Solar Power (CSP) plants. Moreover, it is composed of earth-abundant, inexpensive and non-toxic elements and exhibits a high-energy storage density, which are desirable characteristics for decreasing the deployment costs of the system. However, it undergoes decomposition at pO2 ≤ 0.008 atm and temperature ≥ 1100 °C. Here the possibility of overcoming this limitation and extending the operating temperature range by B-site doping with Fe (CaFexMn1−xO3−δ0) is explored. Two doping levels are investigated, x = 0.1 and 0.3. The enthalpy of reduction was determined from a measurement of continuous equilibrium non-stoichiometry curves (δ, T) at several pO2, enabling an evaluation of the heat storage capacity with high accuracy over widely ranging oxygen non-stoichiometry. Introduction of 0.1 Fe (CaFe0.1Mn0.9O3−δ0) prevented CaMnO3 decomposition up to 1200 °C at pO2 = 0.008 atm, thus widening the operating temperature range and the oxygen reduction extent. The increase in the accessible nonstoichiometry translates into an increase in the heat storage capacity (QM (kJ molABO3−1)) from ∼272 kJ kgABO3−1 in CaMnO3 to ∼344 kJ kgABO3−1 in CaFe0.1Mn0.9O3−δ0. While even larger changes in oxygen content were accessible in CaFe0.3Mn0.7O3−δ0, the oxidation state changes are accompanied by a lower enthalpy of reduction, resulting in a diminished heat storage capacity of ∼221 kJ kgABO3−1.

Graphical abstract: The favourable thermodynamic properties of Fe-doped CaMnO3 for thermochemical heat storage

Supplementary files

Article information

Article type
Paper
Submitted
20 Feb 2020
Accepted
09 Apr 2020
First published
10 Apr 2020
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2020,8, 8503-8517

The favourable thermodynamic properties of Fe-doped CaMnO3 for thermochemical heat storage

E. Mastronardo, X. Qian, J. M. Coronado and S. M. Haile, J. Mater. Chem. A, 2020, 8, 8503 DOI: 10.1039/D0TA02031A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements