Issue 29, 2020

Improved quantum efficiency in an engineered light harvesting/photosystem II super-complex for high current density biophotoanodes

Abstract

Photosystem II (PSII) is the only enzyme that catalyzes light-induced water oxidation, the basis for its application as a biophotoanode in various bio-photovoltaics and photo-bioelectrochemical cells. However, the absorption spectrum of PSII limits the quantum efficiency in the range of visible light, due to a gap in the green absorption region of chlorophylls (500–600 nm). To overcome this limitation, we have stabilized the interaction between PSII and Phycobilisomes (PBSs) – the cyanobacterial light harvesting complex, in vitro. The PBS of three different cyanobacteria (Acaryochloris marina, Am, Mastigocladus laminosus, ML, and Synechocystis sp. PCC 6803, Syn) are analyzed for their ability to transfer energy to Thermosynechococcus elongatus (Te) PSII by fluorescence spill-over and photo-current action spectra. Integration of the PBS–PSII super-complexes within an Os-complex-modified hydrogel on macro-porous indium tin oxide electrodes (MP-ITO) resulted in notably improved, wavelength dependent, incident photon-to-electron conversion efficiencies (IPCE). IPCE values in the green gap were doubled from 3% to 6% compared to PSII electrodes without PBS and a maximum IPCE up to 10.9% at 670 nm was achieved.

Graphical abstract: Improved quantum efficiency in an engineered light harvesting/photosystem II super-complex for high current density biophotoanodes

Supplementary files

Article information

Article type
Paper
Submitted
27 Mar 2020
Accepted
11 May 2020
First published
11 May 2020

J. Mater. Chem. A, 2020,8, 14463-14471

Improved quantum efficiency in an engineered light harvesting/photosystem II super-complex for high current density biophotoanodes

V. Hartmann, D. Harris, T. Bobrowski, A. Ruff, A. Frank, T. Günther Pomorski, M. Rögner, W. Schuhmann, N. Adir and M. M. Nowaczyk, J. Mater. Chem. A, 2020, 8, 14463 DOI: 10.1039/D0TA03444D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements