Issue 37, 2020

Linking gas diffusion electrode composition to CO2 reduction in a flow cell

Abstract

Gas diffusion electrodes (GDEs) mediate the transport of reagents, products, and electrons in electrochemical reactors designed to reduce CO2 into fuels or chemicals. While the ratio of ionomer to electrocatalyst in the precursor catalyst ink is typically assumed not to change after being deposited on the GDE, we show herein that this assumption is likely not valid. Moreover, we discovered that the faradaic efficiency for formate, which is considered to be inconsequential relative to CO when using Ag electrocatalysts, can be modulated by 20% by a mere 5 wt% change in GDE Nafion® content. We were able to resolve these small differences in GDE composition by developing an X-ray fluorescence (XRF) spectroscopic protocol that quantifies the sulfonate groups appended to the polytetrafluoroethylene (PTFE) backbone of Nafion®. Using this protocol, we were able to determine how to precisely control the relative amount of ionomer to electrocatalyst for each GDE. We also found that maintaining a uniform ionomer–catalyst composition across the entire GDE can likely be done more effectively with automated spray coating than with manual deposition methods. We recommend following these procedures in order to generate reproducible CO2RR performance parameters in flow cells.

Graphical abstract: Linking gas diffusion electrode composition to CO2 reduction in a flow cell

Supplementary files

Article information

Article type
Paper
Submitted
31 Mar 2020
Accepted
03 Sep 2020
First published
15 Sep 2020

J. Mater. Chem. A, 2020,8, 19493-19501

Linking gas diffusion electrode composition to CO2 reduction in a flow cell

E. W. Lees, B. A. W. Mowbray, D. A. Salvatore, G. L. Simpson, D. J. Dvorak, S. Ren, J. Chau, K. L. Milton and C. P. Berlinguette, J. Mater. Chem. A, 2020, 8, 19493 DOI: 10.1039/D0TA03570J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements