Issue 48, 2020

A supramolecular-confinement pyrolysis route to ultrasmall rhodium phosphide nanoparticles as a robust electrocatalyst for hydrogen evolution in the entire pH range and seawater electrolysis

Abstract

Developing efficient and durable electrocatalysts with uniform sizes for the hydrogen evolution reaction (HER) in the entire pH range and seawater is critical for scalable and sustainable hydrogen production. Herein, we report a supramolecular starch-assisted confinement–assembly–pyrolysis (SCAP) strategy for the synthesis of ultrasmall Rh2P nanoparticles with high dispersion and low loading anchored on N,P-doped porous carbon (NPC). The Rh2P/NPC composite exhibits an unprecedented HER activity with small overpotentials at 10 mA cm−2 (40 mV in 0.5 M H2SO4 and 17 mV in 1 M KOH), as well as superior stability in both acidic and alkaline media. In addition, the Rh2P/NPC catalyst also exhibits an excellent HER performance in the entire pH range. Especially, the Rh2P/NPC catalyst shows an electrocatalytic HER activity superior to that of a 20% Pt/C catalyst in natural seawater, especially under large current densities. It only needs 160, 341 and 411 mV versus RHE to achieve current densities of 10, 100, and 300 mA cm−2, respectively. To the best of our knowledge, this Rh2P/NPC material is the best electrocatalyst reported thus far for seawater electrolysis. Moreover, the Rh2P/NPC catalyst also shows good stability over a wide range of current densities. All these results indicate that the Rh2P/NPC catalyst can be used as a robust catalyst for hydrogen production via direct seawater electrolysis. In situ X-ray absorption spectra revealed the strong interaction between the Rh–P site and H2O during the HER catalytic process in 1 M KOH, revealing the positive role of the Rh–P site in the HER. Theoretical calculations demonstrate that the strong synergistic effects between Rh2P nanoparticles and NPC modify the electronic structure to accelerate the HER kinetics. More interestingly, the SCAP strategy not only yields a robust and pH-universal HER catalyst, but also enables a general, green, and gram-scale synthesis of other metal phosphides.

Graphical abstract: A supramolecular-confinement pyrolysis route to ultrasmall rhodium phosphide nanoparticles as a robust electrocatalyst for hydrogen evolution in the entire pH range and seawater electrolysis

Supplementary files

Article information

Article type
Paper
Submitted
02 Oct 2020
Accepted
23 Nov 2020
First published
23 Nov 2020

J. Mater. Chem. A, 2020,8, 25768-25779

A supramolecular-confinement pyrolysis route to ultrasmall rhodium phosphide nanoparticles as a robust electrocatalyst for hydrogen evolution in the entire pH range and seawater electrolysis

S. Liu, Y. Chen, L. Yu, Y. Lin, Z. Liu, M. Wang, Y. Chen, C. Zhang, Y. Pan, Y. Liu and C. Liu, J. Mater. Chem. A, 2020, 8, 25768 DOI: 10.1039/D0TA09644J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements