Issue 2, 2020

Boosted photovoltaic performance of indenothiophene-based molecular acceptor via fusing a thiophene

Abstract

Two indenothiophene-based non-fullerene small molecule acceptors (NFSMAs), FTBT and FTTBT, were designed and synthesized to investigate the photovoltaic effect of fusing a thiophene into the core of NFSMAs. Compared with the none-fused FTBT, the thiophene-fused FTTBT achieves a much higher power conversion efficiency (PCE) of 9.79% with a Voc of 0.934 V, a Jsc of 16.01 mA cm−2 and an FF of 65.49%, when it was blended with PM6 polymer donor to fabricate bulk-heterojunction solar cells. Combined photophysical, electrochemical, photovoltaic property and morphology analysis indicates that the boosted device performance mainly lies in two reasons: (i) the incorporation of an electron-donating thiophene ring narrows the optical bandgap by extending π-conjugation, which contributes to a large short-circuit current; (ii) the incorporation of a single thiophene ring transforms the axisymmetrical molecular configuration into a centrosymmetrical one, which decreases the crystallinity and optimizes the packing feature in the blend. It results in a transport-favorable blending morphology and contributes to a high fill factor. The work clarifies an effective molecular design strategy for performance enhancement of organic solar cells.

Graphical abstract: Boosted photovoltaic performance of indenothiophene-based molecular acceptor via fusing a thiophene

Supplementary files

Article information

Article type
Paper
Submitted
24 Jun 2019
Accepted
02 Dec 2019
First published
03 Dec 2019

J. Mater. Chem. C, 2020,8, 630-636

Boosted photovoltaic performance of indenothiophene-based molecular acceptor via fusing a thiophene

P. Wang, X. Jiao, S. Xu, H. Wu, C. R. McNeill, H. Fan and X. Zhu, J. Mater. Chem. C, 2020, 8, 630 DOI: 10.1039/C9TC03407B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements