Issue 8, 2020

A multilevel vertical photonic memory transistor based on organic semiconductor/inorganic perovskite quantum dot blends

Abstract

Organic field-effect transistor (OFET) photonic memory devices have emerged as one of the most promising memory devices for the era of big data due to their easily integrated structure, non-destructive reading and multi-bit data storage. However, the light intensity for the realization of high discrepancies between multilevel storage is across several orders of magnitude and the responding erasing voltage required is up to tens of volts for several seconds. Hence, for the first time, a vertical OFET photonic memory device based on organic semiconductor/inorganic perovskite quantum dot blends was demonstrated. Owing to the intimate interaction between the channels and charge trapping layers (perovskite quantum dots) and vertical architectures with ultrashort channels (downscaling the channel length from tens of micrometers to ∼50 nm), the photonic memory transistor realized the recognition of light information and displayed 8 current level storage with high discrepancies, along with a large memory window (66.5 V) under low light intensity (0.05–0.5 mW cm−2) and relatively low erasing voltage pulses (≤10 V); thus, it is better than previously reported traditional photonic memory devices. Moreover, the memory devices showed excellent multilevel switching responses and could maintain stable endurance properties and retention characteristics. This work not only provides a simple implementation method of high-performance photonic memory devices, but also promises great potential for the realization of multilevel storage under low illumination conditions and low erasing voltage.

Graphical abstract: A multilevel vertical photonic memory transistor based on organic semiconductor/inorganic perovskite quantum dot blends

Supplementary files

Article information

Article type
Paper
Submitted
03 Dec 2019
Accepted
09 Jan 2020
First published
11 Jan 2020

J. Mater. Chem. C, 2020,8, 2861-2869

A multilevel vertical photonic memory transistor based on organic semiconductor/inorganic perovskite quantum dot blends

H. Yang, Y. Yan, X. Wu, Y. Liu, Q. Chen, G. Zhang, S. Chen, H. Chen and T. Guo, J. Mater. Chem. C, 2020, 8, 2861 DOI: 10.1039/C9TC06622E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements