Issue 21, 2020

Impact of dehydration and mechanical amorphization on the magnetic properties of Ni(ii)-MOF-74

Abstract

Mechanically responsive metal–organic frameworks (MOFs) came very recently into the spotlight of material science for their unique properties and potential new fields of application. We present here a clarification of the magnetic properties of prototypical magnetic MOF-74 material, Ni(II)-MOF-74, using magnetization measurements, X-band electron spin resonance (ESR), multi-frequency high-field ESR (HF-ESR), and theoretical model. It was established that the guests populating the honeycomb channels have little influence on the magnetism of Ni-MOF-74, whereas magnetic properties change significantly upon mechanical amorphization. Amorphous material (am-Ni-MOF-74), which can be readily prepared by the mechanochemical treatment of dehydrated Ni-MOF-74 (deh-Ni-MOF-74), as shown by in situ monitoring methods, displays significantly lower bulk magnetization compared to Ni-MOF-74 and deh-Ni-MOF-74. This decline in magnetization is established to be a consequence of the spin-crossover from high-spin to a low-spin state of nickel(II) ions. The observed spin-crossover was rationalized by an insight into the changes of the nickel coordination sphere during the amorphization, which was provided by solid-state nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy. Additionally, it was found that am-Ni-MOF-74 behaves differently than its zinc analogue when exposed to vapors or liquid-additives in the milling process, indicating that the nature of the metal node plays a substantial role in the mechanical properties of this modular family of MOF materials.

Graphical abstract: Impact of dehydration and mechanical amorphization on the magnetic properties of Ni(ii)-MOF-74

Supplementary files

Article information

Article type
Paper
Submitted
18 Feb 2020
Accepted
20 Apr 2020
First published
20 Apr 2020

J. Mater. Chem. C, 2020,8, 7132-7142

Impact of dehydration and mechanical amorphization on the magnetic properties of Ni(II)-MOF-74

S. Muratović, B. Karadeniz, T. Stolar, S. Lukin, I. Halasz, M. Herak, G. Mali, Y. Krupskaya, V. Kataev, D. Žilić and K. Užarević, J. Mater. Chem. C, 2020, 8, 7132 DOI: 10.1039/D0TC00844C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements