Issue 23, 2020

Localised magnetism in 2D electrides

Abstract

Electride materials offer diverse functionalities owing to their high electron mobility and low work function. Of particular importance are magnetic electrides where the anionic electrons confined in interstitial regions can exhibit both itinerant and localised magnetism and whose experimental realisation and theoretical understanding are still in their infancy. By considering two monolayer electrides LaBr2 and La2Br5, we show that a Mott insulating state can be realised in electrides with localised magnetic moments formed by anionic electrons. Having demonstrated that conventional first-principles approaches are incapable of treating such non-atomic magnetic orbitals, we construct effective electronic models in the basis of Wannier functions associated with the anionic states to unveil the microscopic mechanism underlying magnetism in these systems. Being confined at zero-dimensional cavities, the anionic electrons will be shown to reveal an exotic duality of strong localisation like in d- and f-electron systems and large spatial extension inherent to delocalised atomic orbitals. While the former tends to stabilise a Mott-insulating state with localised magnetic moments, the latter results in direct exchange between neighbouring anionic electrons, which dominates over kinetic superexchange. On the basis of spin models, we argue that any long-range magnetic order is prohibited in LaBr2 by Mermin–Wagner theorem, and intersite anisotropy in La2Br5 stabilises weakly coupled ferromagnetic chains. Our study showcases that electride materials combining peculiar features of both localised and delocalised atomic states constitute a unique class of strongly correlated materials.

Graphical abstract: Localised magnetism in 2D electrides

Supplementary files

Article information

Article type
Paper
Submitted
09 Mar 2020
Accepted
23 Apr 2020
First published
24 Apr 2020

J. Mater. Chem. C, 2020,8, 7858-7865

Localised magnetism in 2D electrides

D. I. Badrtdinov and S. A. Nikolaev, J. Mater. Chem. C, 2020, 8, 7858 DOI: 10.1039/D0TC01223H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements