Evaluating the role of phenethylamine iodide as a novel anti-solvent for enhancing performance of inverted planar perovskite solar cells†
Abstract
Inverted perovskite solar cells (PSCs) have attracted much interest due to their improved operational stability in the past few years. However, despite the recent advances of their performance, they still suffer from low power conversion efficiencies with a reduced open-circuit voltage (Voc), as compared to PSCs with a regular structure, due to the presence of defect states. In this work, a promising and more effective strategy than the typical post-treatment passivation method is demonstrated for the decrease of nonradiative recombination in quadruple-cation RbCsMAFA inverted PSCs, through the employment of phenethylammonium iodide in the anti-solvent deposition step during the perovskite formation. As a result, a Voc value as high as 1.17 V is achieved, while control devices (where the typical chlorobenzene anti-solvent was used) exhibited a significantly lower Voc of 1.09 V. Additionally, the devices exhibited high moisture stability by maintaining nearly 80% of their initial efficiency for over 500 h exposure in ambient conditions.