Diverse topological states in a ternary NdAsPd compound†
Abstract
The exploration of topological states in materials is currently focused on metals and semimetals, and their linear band crossing features various topological states, including a nodal point, nodal line and nodal surface. Based on first principles calculations, we have predicted a ternary NdAsPd compound that exhibits multiple topological states of a type-II nodal ring, triply degenerate nodal point and nodal surface states in the absence of spin orbit coupling (SOC) effects. Its band formation mechanism has been analyzed and the corresponding nontrivial drumhead surface and Fermi arc have been confirmed. Under the consideration of SOC, these topological states evolve into a type-II nodal point and type-I nodal line. The remarkable topological diversity in the present material is very rare and can serve as a promising platform upon which to study the rich fermionic states in a single material.
- This article is part of the themed collection: Journal of Materials Chemistry C HOT Papers