Issue 46, 2020

One-pot synthesis of a stable and cost-effective silver particle-free ink for inkjet-printed flexible electronics

Abstract

Silver particle-free inks display immense superiority and potential over silver nanoparticle-based inks in the aspect of synthesis, flexibility and low-temperature processing, which has attracted considerable research interest as an alternative for fabricating conductive structures in recent years. Although recent research on silver particle-free inks has led to beneficial results, there are still some drawbacks: some of the inks are chemically unstable and hence are not suitable for industrial inkjet printing process, although they have good conductivity; while others are cheap in terms of raw material costs but are complicated to make due to the complex synthetic route or using hazardous procedures, or are not compatible with inkjet printing. Therefore, it will be advantageous to develop a stable, cheap and inkjet-printable silver-particle free ink using a simple synthetic procedure. Alcohols are favorable solvents for silver particle-free inks that can provide the ink with essential fluid properties for inkjet printing. However, they have some negative effects on the ink performance due to their physicochemical properties, which should be avoided. In this work, a simple do-it-yourself silver particle-free ink is presented, which shows high chemical stability, low cost and good printability. The ink is formulated via a simple silver oxalate precursor route in alcohols. The fluid property, thermal property, stability and electrical performance of the inks based on different alcohols were investigated and optimized to obtain the final ink for printing on glass and flexible polyimide substrates. The printed Ag features yielded a resistivity of 15.46 μΩ cm at a sintering temperature of 180 °C, which is equivalent to 10 times resistivity of bulk silver. Based on a comprehensive assessment, we can offer a low-cost, easy-to-make, reliable and highly competitive ink for flexible printed electronics.

Graphical abstract: One-pot synthesis of a stable and cost-effective silver particle-free ink for inkjet-printed flexible electronics

Supplementary files

Article information

Article type
Paper
Submitted
13 Aug 2020
Accepted
15 Oct 2020
First published
16 Oct 2020
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. C, 2020,8, 16443-16451

One-pot synthesis of a stable and cost-effective silver particle-free ink for inkjet-printed flexible electronics

W. Yang, F. Mathies, E. L. Unger, F. Hermerschmidt and E. J. W. List-Kratochvil, J. Mater. Chem. C, 2020, 8, 16443 DOI: 10.1039/D0TC03864D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements