Issue 5, 2021

Massive droplet generation for digital PCR via a smart step emulsification chip integrated in a reaction tube

Abstract

Step emulsification (SE) devices coupled with parallel generation nozzles are widely used in the production of large-scale monodisperse droplets, especially for droplet-based digital polymerase chain reaction (ddPCR) analysis. Although current ddPCR systems based on the SE method can provide a fully enclosed ddPCR scheme, high demands on chip fabrication and system control will increase testing costs and reduce its flexibility in ddPCR analysis. In this study, a compact SE device, integrating a smart SE chip into a reaction tube, was developed to prepare large-scale water-in-fluorinated-oil droplets for ddPCR analysis. The SE chip contained dozens of droplet-generation nozzles. By adjusting the nozzle height of the SE chip, monodisperse droplets in a picolitre to nanolitre vloume could be prepared at a production rate of tens to hundreds of microlitres per minute. Subsequently, we utilized such an integrated SE device to prepare monodisperse droplets for ddPCR experiments. The volume of PCR reagent and the number of droplets could be flexibly adjusted according to the requirements of the ddPCR analysis. The quantitative results showed that emulsions prepared by the SE device could achieve ddPCR detection with high accuracy, good repeatability, and an adaptive dynamic range, which also demonstrated the robustness and reliability of such devices in the droplet preparation. Thus, this compact SE device provides an inexpensive, flexible, and simplified droplet preparation method for digital PCR quantitative analysis.

Graphical abstract: Massive droplet generation for digital PCR via a smart step emulsification chip integrated in a reaction tube

Supplementary files

Article information

Article type
Paper
Submitted
14 Sep 2020
Accepted
22 Dec 2020
First published
23 Dec 2020

Analyst, 2021,146, 1559-1568

Massive droplet generation for digital PCR via a smart step emulsification chip integrated in a reaction tube

S. Zhao, Z. Zhang, F. Hu, J. Wu and N. Peng, Analyst, 2021, 146, 1559 DOI: 10.1039/D0AN01841D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements