Issue 3, 2021

Perchlorate detection via an invertebrate biosensor

Abstract

Improvised explosive devices (IEDs) are constructed from easily obtainable ingredients that are often unregulated and difficult to trace. Salts of the oxyhalide perchlorate are frequently used as oxidisers in IEDs and in commercially available munitions, thus a reliable detection is needed to aid forensic investigations and the tracing of environmental ground or surface water contamination. We introduce the nematode Caenorhabditis elegans as a biosensor for the presence of perchlorate, a promising alternative to the costly, technically challenging and time-consuming current perchlorate detection methods. Perchlorate uptake dynamics in C. elegans were first validated using ion exchange chromatography followed by assessing the effects of perchlorate on key life-point indices to verify the suitability of the nematodes as a forensic biosensor. Whole genome microarrays and qPCR analyses established that a set of immune and stress response genes were enriched during perchlorate exposure. A nematode strain (agIs219) containing an integrated copy of the significantly overexpressed t24b8.5 gene promoter followed by a GFP reporter gene was shown to fluoresce in a perchlorate dose dependent manner with a limit of detection (LOD) of 0.5 mg mL−1. Whilst chemicals commonly used in the construction of IEDs did not induce fluorescence, exposure to other oxyhalides did, highlighting the presence of possible shared stress response pathways. Burnt wire sparklers containing potassium perchlorate elicited fluorescence while other non-perchlorate containing post-blast explosion matrices did not. This demonstrates how C. elegans can be used to screen for perchlorate at environmental hotspots, an optimization, possibly with other target transgenes, is required to enable the detection of perchlorate at concentrations below 0.5 mg mL−1.

Graphical abstract: Perchlorate detection via an invertebrate biosensor

Article information

Article type
Paper
Submitted
11 Sep 2020
Accepted
14 Dec 2020
First published
15 Dec 2020
This article is Open Access
Creative Commons BY-NC license

Anal. Methods, 2021,13, 327-336

Perchlorate detection via an invertebrate biosensor

S. A. Alsaleh, L. Barron and S. Sturzenbaum, Anal. Methods, 2021, 13, 327 DOI: 10.1039/D0AY01732A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements