On-demand responsive nanoplatform mediated targeting of CAFs and down-regulating mtROS-PYK2 signaling for antitumor metastasis†
Abstract
The desmoplastic tumor microenvironment (DTME), including overexpressed stromal cells and extracellular matrix, formed the first barrier for the accumulation and penetration of nanoparticles in tumors, which compromised the therapeutic efficacy and prognosis. In some metastatic cells, overactivity of the tricarboxylic cycle could overload the electron transport chain resulting in increased mtROS production, which triggered the mitochondria-driven tumor migration and metastasis. Hence, we developed HPBC@TRP/NPs for down-regulating the mtROS-PYK2 pathway and remodeling the DTME to inhibit tumor growth and metastasis for the first time. TPP-RSV prodrugs were synthesized and targeted at mitochondria, resulting in the scavenging of mtROS, lower PYK2 expression, and activation of the mitochondria-driven apoptotic pathway. Pirfenidone fully remodeled the DTME through inhibiting the expression of CAFs, hyaluronan and collagen I, thereby reducing IFP, eliminating the immunosuppressive microenvironment by decreasing the expression of TGF-β, and increasing the infiltration of cytotoxic T lymphocytes. The combination therapy of different mechanisms via targeting the mtROS-PYK2 pathway and CAFs might provide deeper insights into the inhibition of malignant breast cancer growth and metastasis.