Recent advances in chiral discrimination on host–guest functionalized interfaces
Abstract
Chiral discrimination has gained much focus in supramolecular chemistry, since it is one of the fundamental processes in biological systems, enantiomeric separation and biochemical sensors. Though most of the biochemical processes can routinely recognize biological enantiomers, enantioselective identification of chiral molecules in artificial systems is currently one of the challenging topics in the field of chiral discrimination. Inaccuracy, low separation efficiency and expensive instrumentation were considered typical problems in artificial systems. Recently, chiral recognition on the interfaces has been widely used in the fields of electrochemical detection and biochemical sensing. For the moment, a series of macrocyclic host functionalized interfaces have been developed for use as chiral catalysts or for enantiomeric separation. Here, we have briefly exposited the most recent advances in the fabrication of supramolecular functionalized interfaces and their application for chiral recognition.