Influence of dipole and intermolecular interaction on the tuning dielectric and energy storage properties of polystyrene-based polymers†
Abstract
A dielectric polymer with high energy density is in high demand in modern electric and electronic systems. The current polymer dielectrics are facing the tradeoff between high energy density and low energy loss. Although many efforts have been devoted to solving the problem by modifying biaxially oriented polypropylene (BOPP), poly(vinylidene fluoride) (PVDF) and glassy polymers, limited success has been achieved. In the present work, we disperse the high polar nitrile units in a low polar polystyrene (PSt) matrix to avoid the strong coupling force among the adjacent polar groups and reduce the relaxation-induced high dielectric loss. In addition, the possible charge transportation offered by phenyl groups could be blocked by the enlarged bandgap. Notably, the induced polarization is established between the nitrile and phenyl groups, which may lead to the copolymer chain being more densely packed. As a result, excellent energy storage performances, including the high energy density and low loss, are achieved in the resultant poly(styrene-co-acrylonitrile) (AS). For instance, AS-4 exhibits a Ue of 11.4 J cm−3 and η of 91% at ambient temperature and 550 MV m−1. Manipulating the dipole polarization in the low polar glassy polymer matrix is verified to be a facile strategy for the design of a high-energy storage dielectric polymer.