Reversed selectivity of photocatalytic CO2 reduction over metallic Pt and Pt(ii) oxide cocatalysts†
Abstract
The chemical state of Pt in cocatalysts has a major influence on the activity and selectivity of the photocatalytic reduction of CO2; however, the underlying mechanism is unclear owing to the co-existence of different Pt chemical states and mutual transformation between them. In this study, PtO/TiO2 catalysts were prepared through photodeposition and Pt/TiO2 was prepared by the photoreduction of PtO/TiO2 to avoid interference arising from co-existing Pt forms and different loading amounts. These catalysts exhibited completely reversed selectivity for CO and CH4 production during CO2 photoreduction: PtO/TiO2 tended to produce CO (100%), whereas Pt/TiO2 favored the production of CH4 (66.6%). By combining experimental analysis and theoretical calculations, the difference in selectivity was ascribed to the different charge transfer/separation and CO/H adsorption properties of PtO/TiO2 and Pt/TiO2. Photoelectric and photoluminescence (PL) analysis showed that Pt was more advantageous to the photogenerated carrier separation compared with PtO, which was conducive to the multi-electron CH4 reduction reaction. Fourier transform-infrared spectroscopy, temperature-programmed desorption/temperature-programmed reduction, and density functional theory calculations indicated that the adsorption of CO and hydrogen on Pt was stronger than that on PtO, which favored the further reduction of CO to CH4. Based on the above results, a mechanism was proposed to explain the reversed selectivity of the photocatalytic reduction of CO2 over Pt/TiO2 and PtO/TiO2.