Density functional theory study of transition metal single-atoms anchored on graphyne as efficient electrocatalysts for the nitrogen reduction reaction†
Abstract
Ammonia (NH3) is the main raw material for the organic chemical industry and a critical feedstock for the fertilizer industry with great significance for the global economy. The NH3 demand has gradually increased with modern society development. Moreover, the electrocatalytic nitrogen reduction reaction (NRR) is a promising NH3 synthesis technology. However, the design of efficient electrocatalysts for the NRR is still challenging. In this study, we systematically analyzed transition metal (TM) single-atoms (Ti, V, Cr, Mn, Zr, Nb, and Mo) anchored on graphyne (GY) as NRR catalysts using density functional theory calculations. The calculation results for the first and last hydrogenation steps (*NNH formation and *NH3 desorption, respectively) revealed that Mn@GY (with an end-on configuration) and V@GY (with a side-on configuration) were the most suitable catalytic substrates for the NRR. The free-energy profiles of the TM@GY catalysts indicated that Mn@GY was the best NRR electrocatalyst owing to its distal pathway with a minimum free-energy barrier of 0.36 eV. In addition, the electronic properties, namely the Bader charge, charge density difference, partial density of states, and crystal orbital Hamilton population, of the TM@GY catalysts were analyzed in detail, and the results further confirmed that Mn@GY was an efficient electrocatalyst. The insights obtained from this comprehensive study can provide useful guidelines for designing new and efficient electrocatalysts.