The origin of the faster mechanism of partial enthalpy recovery deep in the glassy state of polymers
Abstract
A novel finding made by Cangialosi and coworkers in the physical aging of several polymers way below the glass transition temperature Tg is that equilibrium recovery occurs by reaching a plateau in the enthalpy with partial enthalpy recovery. This observation points to the existence of a much faster mechanism capable of partial equilibrium recovery deep in the glassy state. A similar phenomenon was found in different glassy materials. The generality of the phenomenon indicates that the faster mechanism of equilibrium recovery is universal and fundamental. In this paper the faster mechanism is identified to be the universal JG β-relaxation having dynamic and thermodynamic properties analogous to the α-relaxation, and thus capable of effecting enthalpy and volume recovery far below Tg in several high-Tg polymers. The JG β-relaxation is also the mechanism responsible for the first step of two steps in the approach to equilibrium found in another polymer with much lower Tg. The Coupling Model is used to explain why the first step transpires far below Tg in some polymers but much closer to Tg in another polymer.
- This article is part of the themed collection: 2021 PCCP HOT Articles