On the chirality-dependent adsorption behavior of volatile organic compounds on carbon nanotubes†
Abstract
The capture and removal of volatile organic compounds (VOCs) have received extensive attention due to their toxicity and carcinogenicity. In order to extend the applications of carbon nanotubes (CNTs) in this field, a deep understanding of the interaction mechanism between VOCs and CNTs is crucial. In this article, molecular dynamics simulations are performed to systematically investigate the multi-molecule adsorption behavior of four representative VOC species on CNTs with a variety of chirality indices. Simulation results reveal that different VOC species exhibit significantly different adsorption preferences on CNTs. For both zigzag and armchair CNTs, the adsorption affinity is positively correlated with the hydrophobicity of VOC molecules and follows the order of toluene > ether > acetone > methanol. This adsorption preference is supported by the binding free energy calculations resulting from the umbrella sampling algorithm. Moreover, the adsorption affinity increases with the diameter of both zigzag and armchair CNTs. Furthermore, the effects of diameter become more significant for those VOC species possessing higher hydrophobicity. As for the effects of chirality, zigzag CNTs show greater adsorption affinity than armchair ones with similar diameters. However, simulation results also indicate that the adsorption affinity does not vary monotonically from zigzag to armchair orientations, leading to additional complexities of harvesting and elimination of VOC molecules in terms of CNTs. Results and data analysis presented in this work suggest that CNT chirality is an important factor for controlling the adsorption of harmful VOC molecules on CNT surfaces.