Polymorphism of chitosan-based networks stabilized by phytate investigated by molecular dynamics simulations†
Abstract
Chitosan can associate in the presence of polyphosphates into insoluble hydrogels capable of drug encapsulation and safe and efficient release. On the one hand, chitosan hydrogels were synthesized using the phytate anion as a crosslinking agent and were characterized by employing dynamic light scattering (DLS) and Fourier transform infrared spectroscopy (FTIR). On the other hand, an effective chitosan–phytate model with atomistic details was created to examine the underlying physical crosslinking pattern, and the structure and dynamics of the chitosan–phytate complex were systematically investigated by using molecular dynamics (MD) simulations. To harbor the crosslinker potential for obtaining chitosan-based hydrogels, the impact of the phytate concentration and the functional groups of the chitosan on the reticulation process was addressed. The phytate association was determined by the phosphates’ capacity for H-bonding to the amine and hydroxyl groups belonging to two consecutive glucosidic units. The physical crosslinking pattern was determined by the number of chitosan chains bound by one phytate anion and the phytate orientation relative to the glucopyranose neighbors. Cross-linking of two up to six chitosan chains mediated by a phytate anion represented favorable states, and the number distribution of cross-linked chains depended on the phytate concentration. The circular distribution of the cross-linkable phosphates regulated the nearly isotropic orientation of the chitosan chains and phytate at the junction, and the variety of topological crosslinking demonstrated the phytate ion's potential for developing chitosan-based hydrogels with improved structural attributes.