Issue 4, 2021

Carbon-based catalysts for Fischer–Tropsch synthesis

Abstract

Fischer–Tropsch synthesis (FTS) is an essential approach to convert coal, biomass, and shale gas into fuels and chemicals, such as lower olefins, gasoline, diesel, and so on. In recent years, there has been increasing motivation to deploy FTS at commercial scales which has been boosting the discovery of high performance catalysts. In particular, the importance of support in modulating the activity of metals has been recognized and carbonaceous materials have attracted attention as supports for FTS. In this review, we summarised the substantial progress in the preparation of carbon-based catalysts for FTS by applying activated carbon (AC), carbon nanotubes (CNTs), carbon nanofibers (CNFs), carbon spheres (CSs), and metal–organic frameworks (MOFs) derived carbonaceous materials as supports. A general assessment of carbon-based catalysts for FTS, concerning the support and metal properties, activity and products selectivity, and their interactions is systematically discussed. Finally, current challenges and future trends in the development of carbon-based catalysts for commercial utilization in FTS are proposed.

Graphical abstract: Carbon-based catalysts for Fischer–Tropsch synthesis

Supplementary files

Article information

Article type
Review Article
Submitted
29 Sep 2020
First published
04 Jan 2021
This article is Open Access
Creative Commons BY license

Chem. Soc. Rev., 2021,50, 2337-2366

Carbon-based catalysts for Fischer–Tropsch synthesis

Y. Chen, J. Wei, M. S. Duyar, V. V. Ordomsky, A. Y. Khodakov and J. Liu, Chem. Soc. Rev., 2021, 50, 2337 DOI: 10.1039/D0CS00905A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements