Issue 7, 2021

Stimuli-responsive metal–organic framework nanoparticles for controlled drug delivery and medical applications

Abstract

Stimuli-responsive metal–organic framework nanoparticles, NMOFs, provide a versatile platform for the controlled release of drugs and biomedical applications. The porous structure of NMOFs, their biocompatibility, low toxicity, and efficient permeability turn the NMOFs into ideal carriers for therapeutic applications. Two general methods to gate the drug-loaded NMOFs and to release the loads were developed: by one method, the loaded NMOFs are coated or surface-modified with stimuli-responsive gates being unlocked in the presence of appropriate chemical (e.g., ions or reducing agents), physical (e.g., light or heat), or biomarker (e.g., miRNA or ATP) triggers. By a second approach, the drug-loaded NMOFs include encoded structural information or co-added agents to induce the structural distortion or stimulate the degradation of the NMOFs. Different chemical triggers such as pH changes, ions, ATP, or redox agents, and physical stimuli such as light or heat are applied to degrade the NMOFs, resulting in the release of the loads. In addition, enzymes, DNAzymes, and disease-specific biomarkers are used to unlock the gated NMOFs. The triggered release of drugs for cancer therapy, anti-blood clotting, and the design of autonomous insulin-delivery systems (“artificial pancreas”) are discussed. Specifically, multi-drug carrier systems and functional NMOFs exhibiting dual and cooperative therapeutic functions are introduced. The future perspectives and applications of stimuli-responsive particles are addressed.

Graphical abstract: Stimuli-responsive metal–organic framework nanoparticles for controlled drug delivery and medical applications

Article information

Article type
Review Article
Submitted
16 Sep 2020
First published
24 Feb 2021

Chem. Soc. Rev., 2021,50, 4541-4563

Stimuli-responsive metal–organic framework nanoparticles for controlled drug delivery and medical applications

Z. Zhou, M. Vázquez-González and I. Willner, Chem. Soc. Rev., 2021, 50, 4541 DOI: 10.1039/D0CS01030H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements