Replacing hybrid density functional theory: motivation and recent advances
Abstract
Density functional theory (DFT) is the most widely-used electronic structure approximation across chemistry, physics, and materials science. Every year, thousands of papers report hybrid DFT simulations of chemical structures, mechanisms, and spectra. Unfortunately, hybrid DFT's accuracy is ultimately limited by tradeoffs between over-delocalization and under-binding. This review summarizes these tradeoffs, and introduces six modern attempts to go beyond them while maintaining hybrid DFT's relatively low computational cost: DFT+U, self-interaction corrections, localized orbital scaling corrections, local hybrid functionals, real-space nondynamical correlation, and our rung-3.5 approach. The review concludes with practical suggestions for DFT users to identify and mitigate these tradeoffs' impact on their simulations.