Issue 12, 2021

Vapor-phase production of nanomaterials

Abstract

The synthesis of nanomaterials, with characteristic dimensions of 1 to 100 nm, is a key component of nanotechnology. Vapor-phase synthesis of nanomaterials has numerous advantages such as high product purity, high-throughput continuous operation, and scalability that have made it the dominant approach for the commercial synthesis of nanomaterials. At the same time, this class of methods has great potential for expanded use in research and development. Here, we present a broad review of progress in vapor-phase nanomaterial synthesis. We describe physically-based vapor-phase synthesis methods including inert gas condensation, spark discharge generation, and pulsed laser ablation; plasma processing methods including thermal- and non-thermal plasma processing; and chemically-based vapor-phase synthesis methods including chemical vapor condensation, flame-based aerosol synthesis, spray pyrolysis, and laser pyrolysis. In addition, we summarize the nanomaterials produced by each method, along with representative applications, and describe the synthesis of the most important materials produced by each method in greater detail.

Graphical abstract: Vapor-phase production of nanomaterials

Article information

Article type
Review Article
Submitted
16 Feb 2021
First published
11 May 2021

Chem. Soc. Rev., 2021,50, 7132-7249

Vapor-phase production of nanomaterials

M. Malekzadeh and M. T. Swihart, Chem. Soc. Rev., 2021, 50, 7132 DOI: 10.1039/D0CS01212B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements