The comparative studies on the magnetic relaxation behaviour of the axially-elongated pentagonal-bipyramidal dysprosium and erbium ions in similar one-dimensional chain structures†
Abstract
A family of cyano-bridged 3d–4f 1D chain compounds, {RE[TM(CN)6(2-PNO)5]}·(H2O)4 {RE = YIII, TM = [FeIII]LS (1); RE = DyIII, TM = CoIII (3); RE = ErIII, TM = [FeIII]LS (4), CoIII (5); 2-PNO = 2-picoline-N-oxide} and {RE[TM(CN)6(2-PNO)5]} {RE = DyIII, TM = [FeIII]LS (2)}, were synthesized and characterized. Single-crystal X-ray diffraction studies reveal that compounds 1 and 3–5 are isostructural, while compound 2 has a similar 1D chain structure with a different chain to chain arrangement. An axially-elongated pentagonal bipyramidal (D5h) coordination geometry is formed with five 2-PNO ligands in the equatorial plane and two [TM(CN)6]3− on the apical sites around the rare earth ions in these compounds. A comparison of the magnetic relaxation behaviour in detail reveals that it is more favorable for the Er (4 and 5) than the Dy analogues (2 and 3) to exhibit SIM properties in this axially-elongated D5h coordination environment. Under zero dc field, ac susceptibility measurements show that the Dy analogues have no magnetic relaxation behaviour, while the Er analogues exhibit frequency dependence despite the strong QTM effect. Under a 1 kOe dc field, the Er analogues generally show 1–2 orders of magnitude longer relaxation time at each selected temperature and a higher relaxation energy barrier than the Dy analogues. And the RECo compounds (3 and 5) show a more suppressed QTM effect than the corresponding REFe (2 and 4) compounds, which may be ascribed to the elimination of the fluctuation field from the neighbouring [FeIII]LS ions. The ab initio calculations indicate the misplacement between the orientation of the main magnetic axis and the structural axis in the Dy analogues, and the relative consistency in the Er analogues, which should be the source of the Er analogues showing better SIM properties than the Dy analogues.